skip to main content


Search for: All records

Creators/Authors contains: "Almansi, Mattia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    We identified the nature and driving mechanisms of subinertial variability (variability at a time scale of several days) in four fjords in Southeast Greenland, in three high‐resolution numerical simulations. We find two dominant frequency ranges in along‐fjord velocity, volume transport of Atlantic Water, and along‐fjord heat transport: one around 2–4 days and one around 10 days. The higher frequency is most prominent in the two smaller fjords (Sermilik Fjord and Kangerdlugssuaq Fjord), while the lower frequency peak dominates in the larger fjords (Scoresby Sund and King Oscar Fjord). The cross‐fjord structure of variability patterns is determined by the fjord's dynamic width, while the vertical structure is determined by the stratification in the fjord. The dominant frequency range is a function of stratification and fjord length, through the travel time of resonant internal Kelvin waves. We find that the subinertial variability is the imprint of Coastal Trapped Waves, which manifest as Rossby‐type waves on the continental shelf and as internal Kelvin‐type waves inside the fjords. Between 50% and 80% of the variability in the fjord is directly forced by Coastal Trapped Waves propagating in from the shelf, with an additional role played by alongshore wind forcing on the shelf.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Abstract Ocean currents along the southeast Greenland coast play an important role in the climate system. They carry dense water over the Denmark Strait sill, freshwater from the Arctic and the Greenland Ice Sheet into the subpolar ocean, and warm Atlantic Ocean water into Greenland’s fjords, where it can interact with outlet glaciers. Observational evidence from moorings shows that the circulation in this region displays substantial subinertial variability (typically with periods of several days). For the dense water flowing over the Denmark Strait sill, this variability augments the time-mean transport. It has been suggested that the subinertial variability found in observations is associated with coastal trapped waves, whose properties depend on bathymetry, stratification, and the mean flow. Here, we use the output of a high-resolution realistic simulation to diagnose and characterize subinertial variability in sea surface height and velocity along the coast. The results show that the subinertial signals are coherent over hundreds of kilometers along the shelf. We find coastal trapped waves on the shelf and along the shelf break in two subinertial frequency bands—at periods of 1–3 and 5–18 days—that are consistent with a combination of mode-I waves and higher modes. Furthermore, we find that northeasterly barrier winds may trigger the 5–18-day shelf waves, whereas the 1–3-day variability is linked to high wind speeds over Sermilik Deep. 
    more » « less
  5. null (Ed.)
    Abstract Computational oceanography is the study of ocean phenomena by numerical simulation, especially dynamical and physical phenomena. Progress in information technology has driven exponential growth in the number of global ocean observations and the fidelity of numerical simulations of the ocean in the past few decades. The growth has been exponentially faster for ocean simulations, however. We argue that this faster growth is shifting the importance of field measurements and numerical simulations for oceanographic research. It is leading to the maturation of computational oceanography as a branch of marine science on par with observational oceanography. One implication is that ultraresolved ocean simulations are only loosely constrained by observations. Another implication is that barriers to analyzing the output of such simulations should be removed. Although some specific limits and challenges exist, many opportunities are identified for the future of computational oceanography. Most important is the prospect of hybrid computational and observational approaches to advance understanding of the ocean. 
    more » « less
  6. A high-resolution numerical model, together with in situ and satellite observations, is used to explore the nature and dynamics of the dominant high-frequency (from one day to one week) variability in Denmark Strait. Mooring measurements in the center of the strait reveal that warm water “flooding events” occur, whereby the North Icelandic Irminger Current (NIIC) propagates offshore and advects subtropical-origin water northward through the deepest part of the sill. Two other types of mesoscale processes in Denmark Strait have been described previously in the literature, known as “boluses” and “pulses,” associated with a raising and lowering of the overflow water interface. Our measurements reveal that flooding events occur in conjunction with especially pronounced pulses. The model indicates that the NIIC hydrographic front is maintained by a balance between frontogenesis by the large-scale flow and frontolysis by baroclinic instability. Specifically, the temperature and salinity tendency equations demonstrate that the eddies act to relax the front, while the mean flow acts to sharpen it. Furthermore, the model reveals that the two dense water processes—boluses and pulses (and hence flooding events)—are dynamically related to each other and tied to the meandering of the hydrographic front in the strait. Our study thus provides a general framework for interpreting the short-time-scale variability of Denmark Strait Overflow Water entering the Irminger Sea.

     
    more » « less